
J Glob Optim (2009) 44:349–374
DOI 10.1007/s10898-008-9331-9

A second-order pruning step for verified global
optimization

Marco Schnurr

Received: 12 December 2007 / Accepted: 16 July 2008 / Published online: 8 August 2008
© Springer Science+Business Media, LLC. 2008

Abstract We consider pruning steps used in a branch-and-bound algorithm for verified
global optimization. A first-order pruning step was given by Ratz using automatic compu-
tation of a first-order slope tuple (Ratz, Automatic Slope Computation and its Application
in Nonsmooth Global Optimization. Shaker Verlag, Aachen, 1998; J. Global Optim. 14:
365–393, 1999). In this paper, we introduce a second-order pruning step which is based on
automatic computation of a second-order slope tuple. We add this second-order pruning step
to the algorithm of Ratz. Furthermore, we compare the new algorithm with the algorithm of
Ratz by considering some test problems for verified global optimization on a floating-point
computer.

Keywords Global optimization · Interval analysis · Pruning step

Mathematics Subject Classification (2000) 65G20 · 65K05 · 90C56

1 Introduction

Let f : D ⊆ R
n → R be continuous and [x] ⊆ D. Our aim is to find guaranteed two-sided

bounds for the global minimum

f ∗ := min
x∈[x] f (x)

and for all global minimizers x∗ ∈ [x]. We require that the bounds satisfy a specified accuracy.
For details, see Sect. 5.

This paper contains some results from the author’s dissertation [29].

M. Schnurr (B)
Institute for Applied and Numerical Mathematics, University of Karlsruhe, 76128 Karlsruhe, Germany
e-mail: marco.schnurr@math.uni-karlsruhe.de

123

350 J Glob Optim (2009) 44:349–374

Common methods to address this problem are branch-and-bound algorithms using interval
analysis. These algorithms are due to Hansen [8,9], Ichida/Fujii [11] and Skelboe [33]. The
approach is as follows. The interval [x] is partitioned, and subintervals are discarded, once it
is proven that they do not contain a global minimizer. The remaining subintervals are parti-
tioned again until we have achieved the required accuracy. Interval analysis guarantees that
no global minimizer is lost in the algorithm, even though the computation is performed on a
floating-point computer.

Acceleration tools are crucial to obtaining acceptable computation times. If f is continu-
ously differentiable, then a “monotonicity-test” discards intervals that do not contain a zero
of f ′. Other tools, such as the “concavity test” or the interval Newton method, use evaluations
of f ′′. Furthermore, enclosures of the range of f ′ or f ′′ may provide better enclosures of
the range of f than an interval arithmetic evaluation of f (see [1]). The “mean value form”
is such an approach. Enclosures of f ′ and f ′′ can be obtained by automatic differentiation
[20]. Introductions to global optimization methods using interval analysis can be found in
[10] and [12].

Slope enclosures [15] can be used to compute enclosures of the range of f that are
sharper than range enclosures provided by the mean value form. However, slope enclosures
do not detect the monotonicity of a function. Therefore, other box-discarding techniques
are required. Ratz [21,22] introduces a pruning step that uses slope enclosures for elim-
inating subintervals of the current interval that do not contain a global minimizer. This
method may also be used for non-smooth functions. Ratz obtains a slope enclosure as an
element of a slope tuple which may be computed by a technique analogous to automatic
differentiation.

In this paper, we extend the method of Ratz [21,22] by introducing a second-order pruning
step. Furthermore, we include this second-order pruning step in a branch-and-bound algo-
rithm for verified global optimization. We compare this approach with the algorithm of Ratz
by considering some test problems. For the implementation we assume that f is locally Lips-
chitz continuous on [x], that f is given by a function expression (cf. [1]), and that the interval
arithmetic evaluation of f on [x] exists. Then, by expanding techniques due to Shen/Wolfe
[32] and Kolev [14], a second-order slope tuple can be computed [25,29]. The source code
of our program is freely available [27].

The paper is organized as follows. In Sects. 2 and 3, we introduce slope enclosures and
explain the automatic computation of first-order and second-order slope tuples. Section 4
describes the componentwise computation of slope tuples which is used in our algorithm,
and Sect. 5 provides an introduction to global optimization using interval analysis. In Sect. 6,
we introduce a second-order pruning step for univariate functions. We apply this pruning step
to global optimization of multivariate functions and state our algorithm in Sect. 7. Finally,
in Sect. 8, we consider some examples and compare the new algorithm with the algorithm
of Ratz.

Throughout this paper, [x] = [
x, x

] = {
x ∈ R

n
∣∣ xi ≤ xi ≤ xi

}
with x, x ∈ R

n denotes
an interval vector, and IR

n the set of all interval vectors [x] ⊆ R
n . The midpoint of [x]

is denoted by mid [x] := 1
2

(
x + x

)
. Furthermore, for an interval [x] ∈ IR, we define the

diameter diam [x] ∈ R by diam [x] := x − x , and the relative diameter diamrel [x] ∈ R

by

diamrel [x] :=

⎧
⎪⎨

⎪⎩

diam [x]
min{|x |,x∈ [x]} , if 0 /∈ [x],

diam [x], otherwise.

123

J Glob Optim (2009) 44:349–374 351

2 Slope functions and slope enclosures

Slope enclosures provide enclosures of the function range which may be sharper than those
obtained by using derivatives (see [15]). Furthermore, slope enclosures can be used for com-
putational existence tests such as the Moore test [17] and tests based on Miranda’s theorem
[5,24]. In this section, we give the definitions needed in the sequel.

Definition 2.1 Let f : D ⊆ R → R be continuous and x̃ ∈ D be fixed. A function
δ f : D → R satisfying

f (x) = f (x̃) + δ f (x; x̃) · (x − x̃) , x ∈ D, (1)

is called a (first-order) slope function of f with respect to x̃ .
An interval δ f ([x] ; x̃) ∈ IR containing the range of δ f (x; x̃) on [x] ⊆ D, i.e.

a δ f ([x] ; x̃) ∈ IR with
δ f ([x]; x̃) ⊇ {δ f (x; x̃) | x ∈ [x] } ,

is called a (first-order) slope enclosure of f on [x] with respect to x̃ .

If x = x̃ , then (1) holds for arbitrary δ f (x̃; x̃) ∈ R. If f is differentiable in x̃ , then we set
δ f (x̃; x̃) := f ′(x̃).

Let δ f ([x]; x̃) be a first-order slope enclosure of f on [x]. Then,

f (x) ∈ f (x̃) + δ f ([x]; x̃) · ([x] − x̃) (2)

holds for all x ∈ [x]. Obviously, (2) may provide sharper enclosures of the range of f on [x]
than the mean value form [16].

For the continuous function f : R → R,

f (x) =
{√

x for x ≥ 0,

0 for x < 0,

and x̃ = 0, [x] = [−1, 1], a first-order slope enclosure δ f ([x]; 0) ∈ IR of f on [x] with
respect to x̃ does not exist. In order to give a sufficient existence statement we define the
limiting slope interval (see [19]).

Definition 2.2 Let f : D ⊆ R → R be continuous on [x] ⊆ D, and let x̃ ∈ [x]. If

lim inf
x→x̃

f (x) − f (x̃)

x − x̃
∈ R and lim sup

x→x̃

f (x) − f (x̃)

x − x̃
∈ R,

then the limiting slope interval δ flim
([

x̃
]) ∈ IR is

δ flim
([

x̃
]) :=

[
lim inf

x→x̃

f (x) − f (x̃)

x − x̃
, lim sup

x→x̃

f (x) − f (x̃)

x − x̃

]
.

Obviously, the limiting slope interval δ flim
([

x̃
])

exists, if f is Lipschitz continuous in
some neighbourhood of x̃ . If f is differentiable in x̃ , we have

δ flim
([

x̃
]) = [

f ′(x̃) , f ′(x̃)
]
.

Lemma 2.3 Let f : D ⊆ R → R be continuous on [x] ⊆ D and let x̃ ∈ [x]. We assume
that δ flim

([
x̃
]) ∈ IR exists. Then,

123

352 J Glob Optim (2009) 44:349–374

δ f ([x]; x̃) =
⎡

⎢
⎣ inf

x∈[x]
x
=x̃

f (x) − f (x̃)

x − x̃
, sup

x∈[x]
x
=x̃

f (x) − f (x̃)

x − x̃

⎤

⎥
⎦

is a first-order slope enclosure of f on [x] with respect to x̃ .

Proof see [19]. �

Remark 2.4 Let f : D ⊆ R → R be Lipschitz continuous in some neighbourhood of x̃ ∈ D.
Muñoz and Kearfott [19] show the inclusion

δ flim
([

x̃
]) ⊆ ∂ f (x̃), (3)

where ∂ f (x̃) is the generalized gradient [4]. Furthermore, they give a sufficient condition
for equality in (3).

Definition 2.5 Let f : D ⊆ R → R be continuous, [x] ⊆ D, and x̃ ∈ [x]. Furthermore, we
assume that δ flim

([
x̃
])

exists. An interval δ2 f ([x]; x̃) ∈ IR statisfying

f (x) ∈ f (x̃) + δ flim
([

x̃
]) · (x − x̃) + δ2 f ([x]; x̃) · (x − x̃)2 , x ∈ [x], (4)

is called a second-order slope enclosure of f on [x] with respect to x̃ .

3 Automatic computation of slope tuples

In the following sections, we assume that each function is given by a function expression
in the sense of [1], i.e. the function expression consists of a finite number of operations
+,−, ·, / and a finite number of elementary functions. Furthermore, we assume that an
interval arithmetic evaluation on the interval [x] exists.

Definition 3.1 [21,22] Let u : D ⊆ R → R be continuous, [x] ⊆ D, and x̃ ∈ [x]. A triple
U = (Ux , Ux̃ , δU) with Ux , Ux̃ , δU ∈ IR satisfying

u(x) ∈ Ux ,

u (x̃) ∈ Ux̃ ,

u(x) − u (x̃) ∈ δU · (x − x̃),

for all x ∈ [x] is called a first-order slope tuple of u on [x] with respect to x̃ .

Definition 3.2 Let u : D ⊆ R → R be continuous, [x] ⊆ D, and x̃ ∈ [x]. A second-order
slope tuple of u on [x] with respect to x̃ is a five-tuple U = (Ux , Ux̃ , δUx̃ , δU, δ2U) with
Ux , Ux̃ , δUx̃ , δU, δ2U ∈ IR, Ux̃ ⊆ Ux , satisfying

u(x) ∈ Ux , (5)

u (x̃) ∈ Ux̃ , (6)

δu lim
([

x̃
]) ⊆ δUx̃ , (7)

u(x) − u (x̃) ∈ δU · (x − x̃) , (8)

u(x) − u (x̃) ∈ δUx̃ · (x − x̃) + δ2U · (x − x̃)2 (9)

for all x ∈ [x].

123

J Glob Optim (2009) 44:349–374 353

Automatic differentiation [20] is a technique to compute function and derivative values
simultaneously without requiring an explicit formula for the derivative. By combining this
technique with interval analysis, we obtain enclosures of the function and the derivative range
on some interval [x].

By using an arithmetic for slope tuples analogous to automatic differentiation, first-order
slope tuples can be computed without requiring an explicit formula of a slope function (see
[15]). For approaches using nonsmooth elementary functions, such as ϕ(x) = abs (u(x)),
ϕ(x)= min (u(x), v(x)), and functions given by two or more branches, see [12,21,23,28,30].
Furthermore, the enclosures may be sharpened by exploiting a unique point of inflection [26].

An arithmetic for the automatic computation of second-order slope tuples is given in
[25,29]. This extends results contained in [14,32]. In [25,29], the expression of the consid-
ered function may also contain nonsmooth elementary functions, such as ϕ(x) = abs (u(x)),
ϕ(x) = min (u(x), v(x)), and functions given by two or more branches. A second-order
slope tuple, more precisely relation (9), may provide a sharper enclosure of the function
range than a first-order slope tuple. For details see [25,29].

4 The componentwise computation of slope tuples

For u : D ⊆ R
n → R it is possible to perform the automatic computation of first-order

and second-order slope tuples. For details see [21] and [25,29], respectively. However, as
explained by Ratz [21], a pruning step using such slope tuples would be very costly and
not effective. Therefore, for multivariate functions, we use an approach called the “com-
ponentwise computation of slope tuples” [21]. The idea is to reduce the problem to the
one-dimensional case. We briefly summarize this technique. It will be combined with a
first-order and a second-order pruning step for univariate functions (see Sects. 5 and 6).

Definition 4.1 Let u : D ⊆ R
n → R be continuous on [x] ⊆ D and i ∈ {1, . . . , n} be fixed.

We define the family Gi of functions by

Gi :=
⎧
⎨

⎩

g : [x]i ⊆ R → R, g(t) := u (x1, . . . , xi−1, t, xi+1, . . . , xn)

where x j ∈ [x] j is fixed for j ∈ {1, . . . , n} , j
= i.

⎫
⎬

⎭
(10)

Each g ∈ Gi is a function of one variable. Thus, as described in Sect. 3, for each g ∈ Gi

the automatic computation of a slope tuple on the interval [x]i with respect to x̃i ∈ [x]i ,
x̃i ∈ R, can be performed.

Similar to Definition 3.2, we introduce a second-order slope tuple for the componentwise
computation.

Definition 4.2 Let u : D ⊆ R
n → R be continuous on [x] ∈ IR

n , [x] ⊆ D. Further-
more, let i ∈ {1, . . . , n} and x̃i ∈ R, x̃i ∈ [x]i be fixed. A second-order slope tuple of u
on [x] with respect to the component i is a five-tuple U = (Ux , Ux̃ , δUx̃ , δU, δ2U), with
Ux , Ux̃ , δUx̃ , δU, δ2U ∈ IR, Ux̃ ⊆ Ux , such that

g (xi) ∈ Ux ,

g (x̃i) ∈ Ux̃ ,

δg lim
([

x̃
]

i

) ⊆ δUx̃ ,

g (xi) − g (x̃i) ∈ δU · (xi − x̃i) ,

g (xi) − g (x̃i) ∈ δUx̃ · (xi − x̃i) + δ2U · (xi − x̃i)
2

holds for all xi ∈ [x]i and all g ∈ Gi . Here, Gi is defined as in (10).

123

354 J Glob Optim (2009) 44:349–374

The automatic computation of a second-order slope tuple U of u on [x] with respect to
the component i is analogous to the one-dimensional technique from Sect. 3 (see [25,29]).

Suppose U is a second-order slope tuple of u on [x] with respect to the component i . Then,
for all x ∈ [x] we have

u(x) ∈ Ux , (11)

u(x) ∈ Ux̃ + δU · ([x]i − x̃i) (12)

and

u(x) ∈ Ux̃ + δUx̃ · ([x]i − x̃i) + δ2U · ([x]i − x̃i)
2 . (13)

Therefore, (11–13) are enclosures of the range of u on [x] ∈ IR
n .

Remark 4.3 We use a technique similar to the slope computation by Hansen [7,10] in order
to sharpen the enclosures (11–13). Let u : D ⊆ R

n → R be continuous and x̃ ∈ [x] ⊆ D be
fixed. We have

u (x1, . . . , xn) − u (x̃1, . . . , x̃n)

= u (x1, . . . , xn) − u
(
x̃1, x2, . . . , xn

) + u
(
x̃1, x2, . . . , xn

)

− u (x̃1, x̃2, x3, . . . , xn) + u (x̃1, x̃2, x3, . . . , xn)

− + · · · + u (x̃1, . . . , x̃n−1, xn) − u (x̃1, . . . , x̃n) .

For each i ∈ {1, . . . , n}, we consider the function

ui : (x̃1, . . . , x̃i−1, [x]i , [x]i+1, . . . , [x]n) → R

with

ui (x) : = u (x̃1, . . . , x̃i−1, xi , xi+1, . . . , xn)

for x ∈ (x̃1, . . . , x̃i−1, [x]i , [x]i+1, . . . , [x]n) .

We now compute a second-order slope tuple Ui := (
Ux;i , Ux̃;i , δUx̃;i , δUi , δ2Ui

)
of ui on

(x̃1, . . . , x̃i−1, [x]i , [x]i+1, . . . , [x]n) with respect to the component i . Then, we have the
enclosures

u(x) ∈ Ux;1, (14)

u(x) ∈ Ux̃;n +
n∑

j=1

δU j · ([x] j − x̃ j
)
, (15)

u(x) ∈ Ux̃;n +
n∑

j=1

δUx̃; j · ([x] j − x̃ j
) +

n∑

j=1

δ2U j · ([x] j − x̃ j
)2 (16)

for all x ∈ [x].

5 Global optimization using interval analysis

Let f : D ⊆ R
n → R be continuous and [x] ⊆ D. Our aim is to find guaranteed two-sided

bounds for the global minimum

f ∗ := min
x∈[x] f (x)

123

J Glob Optim (2009) 44:349–374 355

and for all global minimizers x∗ ∈ [x] so that the accuracy condition (17) is satisfied. This
condition has also been used in [21]. Branch-and-bound algorithms using interval analysis
are suitable for solving this problem. We continue by describing the general idea.

For the branch-and-bound algorithm we use a list L for intermediate and a list Q for

final results. The elements of L and Q are pairs
(
[y], f y

)
consisting of an interval vector

[y] = (
[y]1 , . . . , [y]n

) ∈ IR
n and a real number f y such that

f y ≤ min
y∈[y] f (y).

Furthermore, we need a real number f̃ that is an upper bound of f ∗ in each step of the
algorithm. We initialize the algorithm with an enclosure f[x] of the range of f on [x] which
may be obtained by an interval arithmetic evaluation of f (see [1]). Furthermore, we generate
the pair

([x], inf f[x]
)

as the first element of L. Q is initialized as an empty list. Moreover,
we initialize f̃ by f̃ := sup f[x].

In the first step of the algorithm, we remove the first pair
([x], inf f[x]

)
from L and sub-

divide [x]. For each subinterval [y] ⊆ [x] we compute an enclosure f[y] of the range of
f on [y] and generate the pair

([y], inf f[y]
)
. If f̃ < inf f[y], then [y] does not contain a

global minimizer, and the pair
([y], inf f[y]

)
is discarded (“range check”). Furthermore, if

f̃ > sup f[y], then f̃ is replaced by sup f[y]. If

max
j=1,...,n

diamrel [y] j ≤ ε or diamrel f[y] ≤ ε, (17)

then the pair
([y], inf f[y]

)
is stored in Q, otherwise in L. In the next step, we remove

the next pair contained in L and proceed as before. The algorithm stops as soon as L is
empty. Let

([q]i , inf f[q]i
)
, i = 1, . . . , n, be the pairs in Q after the algorithm has stopped.

Then, all global minimizers of f are contained in the union of the [q]i . Furthermore, we

have f ∗ ∈
[
mini

{
inf f[q]i

}
, f̃

]
. Machine interval arithmetic on a floating-point computer

guarantees these enclosures. For details of the algorithm see [10,12].
It is crucial to apply some acceleration tools for the branch-and-bound algorithm above.

There are some effective tools using derivatives such as the monotonicity test, the concavity
test, and the interval Newton step. Ratz [21,22] introduces a first-order pruning step as an
acceleration tool that also applies to nonsmooth functions: Checking a subinterval [y] ⊆ [x],
he gets the enclosure

f (x) ∈
[

fx̃ , fx̃

]
+
[
δ f , δ f

]
· (xi − x̃i) for all x ∈ [y], (18)

where x̃ ∈ [y] is fixed,
[

fx̃ , fx̃

]
∈ IR, and

[
δ f , δ f

]
∈ IR. (18) is obtained by the com-

ponentwise computation of a first-order slope tuple with respect to the component i . Hence,
the graph of f on [y] is bounded by hyperplanes that only depend on xi . By intersecting
these hyperplanes with the level f̃ , we obtain a subset of [y] which does not contain a global
minimizer of f . Computing these intersections is a one-dimensional problem, because the
right hand side of (18) only depends on xi .

We note that similar pruning steps can be carried out using enclosures of the derivative if
f is continuously differentiable [34,36,37]. Then, the enclosure (18) does not depend on x̃ ,
so that an “optimal” x̃ can be computed (cf. [2]). Compared to that, for Ratz’ pruning step we
are able to use (first-order) slope tuples. This may provide sharper enclosures of the range of
f and applies to some nonsmooth functions as well.

123

356 J Glob Optim (2009) 44:349–374

In the next section, we introduce a second-order pruning step which may be combined
with the componentwise computation of a second-order slope tuple.

6 A second-order pruning step

As explained above, by using the componentwise computation of slope tuples, the prun-
ing step becomes a one-dimensional problem. Hence, we only consider univariate functions
f : D ⊆ R → R in this section.

Let f be continuous on [x] ⊆ D, and let c ∈ [y] =
[

y, y
]

⊆ [x] be fixed. We assume

that we have given an enclosure

f (x) − f (c) ∈
[
δ f c, δ f c

]
· (x − c) +

[
δ2 f , δ2 f

]
· (x − c)2 for all x ∈ [y], (19)

which may be obtained via automatic computation of a second-order slope tuple. Further-

more, let
[

f c, f c
]

be an interval containing f (c). Then, the range of f on [y] is enclosed

by the parabolas

f (x) ≥ f c + δ f c · (x − c) + δ2 f · (x − c)2 =: g1(x) for y ≤ x ≤ c , (20)

f (x) ≤ f c + δ f c · (x − c) + δ2 f · (x − c)2 =: g2(x) for y ≤ x ≤ c , (21)

f (x) ≥ f c + δ f c · (x − c) + δ2 f · (x − c)2 =: g3(x) for c ≤ x ≤ y , (22)

f (x) ≤ f c + δ f c · (x − c) + δ2 f · (x − c)2 =: g4(x) for c ≤ x ≤ y , (23)

(see Fig. 1), as opposed to [21,22], where the graph of f is enclosed by straight lines.
Let

f̃ ≥ f ∗ = min
x∈[x] f (x) (24)

be an upper bound for the global minimum of f on [x].
For the two quadratic equations

f̃ = f c + δ f c · (x − c) + δ2 f · (x − c)2 (25)

and

f̃ = f c + δ f c · (x − c) + δ2 f · (x − c)2 (26)

we define the discriminants

Dp :=
(

δ f c

2 δ2 f

)2

−
(

f c − f̃
)

δ2 f
=

(
δ f c

2 − 4 δ2 f
(

f c − f̃
))

/
(

4 δ2 f 2
)

(27)

and

Dq :=
(

δ f c

2 δ2 f

)2

−
(

f c − f̃
)

δ2 f
=

(
δ f c2 − 4 δ2 f

(
f c − f̃

))
/
(

4 δ2 f 2
)

. (28)

Now, we can state the second-order pruning step. First, we define Assumption A needed for
the following theorems.

123

J Glob Optim (2009) 44:349–374 357

Fig. 1 Enclosing the range of f
by (20–23)

f(x)

fc

c

fc

y
_

y x

3

_

g
4

f

g

1

g
2

g

Assumption A: Let f : D ⊆ R → R be continuous on [x], c ∈ [y] =
[

y, y
]

⊆
[x] and f (c) ∈

[
f c, f c

]
. Furthermore, assume that the intervals

[
δ f c, δ f c

]
∈ IR and

[
δ2 f , δ2 f

]
∈ IR satisfy (19), and assume that f̃ ∈ R satisfies (24).

Theorem 6.1 Suppose that Assumption A holds. Furthermore, assume that δ2 f < 0. Set

p : =

⎧
⎪⎨

⎪⎩

min
{

c, c − δ f c
2 δ2 f − √

Dp, c − δ f c
δ2 f

}
, if Dp > 0,

min
{

c, c − δ f c
δ2 f

}
, otherwise,

⎫
⎪⎬

⎪⎭
(29)

q : =

⎧
⎪⎨

⎪⎩

max
{

c, c − δ f c
2 δ2 f + √

Dq , c − δ f c
δ2 f

}
, if Dq > 0,

max
{

c, c − δ f c
δ2 f

}
, otherwise,

⎫
⎪⎬

⎪⎭
(30)

and

Z :=
{∅, if p = q = c,

(p, q) ∩ [y], otherwise.

Then, we have

f (x) > f ∗, x ∈ Z.

Proof If Dp > 0, then the quadratic Eq. 25 has the solutions

p1 := c − δ f c

2 δ2 f
− √

Dp (31)

123

358 J Glob Optim (2009) 44:349–374

and

p2 := c − δ f c

2 δ2 f
+ √

Dp. (32)

Therefore, by δ2 f < 0 we get

f (x) > f̃ ≥ f ∗ for all x ∈ (p1, p2) ∩
[

y, c
]
. (33)

In order to prove
{

f (x) > f ∗ for all x ∈ (p, c) , if p < c and q ≤ c,
f (x) > f ∗ for all x ∈ (p, c] , if p < c and q > c,

(34)

we distinguish four cases:
(i) Suppose Dp > 0, p2 > c and f̃ ≤ f c .
Then, we have

√
Dp ≥

∣
∣
∣
∣
∣

δ f c

2 δ2 f

∣
∣
∣
∣
∣
.

By (31) we get

min

{

p1, c − δ f c

δ2 f

}

= p1 ≤ c.

Therefore, using (33) we obtain

f (x) > f ∗ for all x ∈ (p, p2) ∩
[

y, c
]

with p from (29). This implies (34).
(ii) Suppose Dp > 0, p2 > c and f̃ > f c .
Then, we have

√
Dp <

∣∣∣∣∣
δ f c

2 δ2 f

∣∣∣∣∣
,

and by (32) we have δ f c > 0. Therefore,

p = min

{

c, c − δ f c

2 δ2 f
− √

Dp, c − δ f c

δ2 f

}

= c < p1

holds. By (33) we obtain

f (x) > f ∗ for all x ∈ (p, p2) ∩
[

y, c
]

= ∅.

(iii) Suppose Dp > 0 and p2 ≤ c .
Then, by (32) we have δ f c < 0. Because of δ2 f < 0 we get

f (c) + δ f c · (x − c) + δ2 f · (x − c)2 > f (c)

for all

x ∈
(

c − δ f c

δ2 f
, c

)

∩
[

y, c
]
. (35)

123

J Glob Optim (2009) 44:349–374 359

Hence, by (19),

f (x) > f (c) ≥ f ∗

holds for all x from (35). Using

c − δ f c

δ2 f
< p2 ≤ c,

we obtain

f (x) > f ∗ for all x ∈ (p, c) ∩
[

y, c
]

(36)

from (33).
Because of δ f c < 0 we also have δ f c < 0. Therefore, if q > c holds for q from (30),

then we have

√
Dq >

δ f c

2 δ2 f
. (37)

Because (37) implies f c > f̃ , we get

f (x) > f ∗ for all x ∈ (p, c] ∩
[

y, c
]
, if q > c. (38)

From (36) and (38) we get (34).
(iv) Suppose Dp ≤ 0.
If

min

{

c, c − δ f c

δ2 f

}

= c

holds, then there is nothing to show. If

min

{

c, c − δ f c

δ2 f

}

= c − δ f c

δ2 f
< c,

then we have δ f c < 0. Analogously to (iii) we get (36) and (38) which gives (34).
Analogously to (i–iv), we proceed for the quadratic Eq. 26. Combining the results, we get

f (x) > f ∗, x ∈ (p, q) ∩ [y],
if p < c or q > c. �

Corollary 6.2 If the assumptions of Theorem 6.1 hold, then each x∗ ∈ [y] that is a global
minimizer of f on [x] is contained in

(−∞, p] ∩
[

y, c
]

or in

[c, y] ∩ [q,∞) .

If p < y and q > y, then [y] cannot contain a global minimizer of f on [x].

123

360 J Glob Optim (2009) 44:349–374

Fig. 2 Illustration of
Theorem 6.1

s

~

q

f

p

f

fc

fc

cy
_
y_

f(x)

x

Figure 2 illustrates Theorem 6.1 in the case of

Dp > 0, p = c − δ f c

2 δ2 f
− √

Dp, Dq > 0, q = c − δ f c

2 δ2 f
+ √

Dq .

In the diagram we have

s := c − δ f c

δ2 f
> p.

Figure 3 illustrates Theorem 6.1 in the case of

Dp > 0, p = c − δ f c

δ2 f
, Dq < 0.

In both figures we have f (x) > f ∗ for all x ∈ (p, q). The other cases can be illustrated
analogously.

Theorem 6.3 Suppose that Assumption A holds. Furthermore, assume that δ2 f = 0. Set

p :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c +
(

f̃ − f c
)

/ δ f c , if δ f c > 0 and f̃ < f c,

−∞, if δ f c < 0,

−∞, if δ f c = 0 and f̃ < f c,
c, if δ f c ≥ 0 and f̃ ≥ f c,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(39)

q :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c +
(

f̃ − f c
)

/ δ f c , if δ f c < 0 and f̃ < f c,

+∞, if δ f c > 0,

+∞, if δ f c = 0 and f̃ < f c,
c, if δ f c ≤ 0 and f̃ ≥ f c,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(40)

123

J Glob Optim (2009) 44:349–374 361

Fig. 3 Theorem 6.1 in the case

of Dp > 0, p = c − δ f c
δ2 f ,

Dq < 0

q
p

f
~

c

fc

fc

_ xy_y

f(x)

f

and

Z :=
{∅, if p = q = c,

(p, q) ∩ [y] , otherwise.

Then, we have

f (x) > f ∗, x ∈ Z. (41)

Proof Because of δ2 f = 0,

f (x) ≥ f (c) + δ f c · (x − c) ≥ f c + δ f c · (x − c) (42)

holds for all x ∈
[

y, c
]
. We consider the four cases in (39):

(i) If δ f c > 0 and f̃ < f c, then by (42) we have

f (x) ≥ f c + δ f c · (x − c) > f̃ ≥ f ∗

for all x ∈
(

c +
(

f̃ − f c
)

/ δ f c , c
]
.

(ii) If δ f c < 0, then by (42) we obtain
f (x) > f (c) ≥ f ∗

for all x ∈
[

y, c
)

. If, additionally, q > c holds, then by δ f c ≤ δ f c < 0 and (40) we have

f c > f̃ . Thus, we get
f (x) > f ∗ for all x ∈

[
y, c

]
.

(iii) If δ f c = 0 and f̃ < f c, then by (42) we have

f (x) ≥ f c > f̃ ≥ f ∗

for all x ∈
[

y, c
]
.

123

362 J Glob Optim (2009) 44:349–374

(iv) If δ f c ≥ 0 and f̃ ≥ f c, then we have p = c.
Analogously, we proceed for the cases for q . Combining (i–iv) and all cases for q we

obtain

f (x) > f̃ ≥ f ∗, x ∈ (p, q) ∩ [y], if p < c or q > c.

This proves (41). �

Remark 6.4 Corollary 6.2 also holds, if the assumptions of Theorem 6.3 instead of Theorem
6.1 are satisfied.

Figure 4 illustrates Theorem 6.3 in the case of

0 < δ f c ≤ δ f c and f̃ < f c .

The search for global minimizers x∗ ∈
[

y, y
]

of f on [x] can be restricted to the interval
[

y, p
]
.

Theorem 6.5 Suppose that Assumption A holds. Furthermore, assume that δ2 f > 0. Set

p1 :=
{

c − δ f c
2 δ2 f − √

Dp , if Dp ≥ 0 ,

y − 1 , if Dp < 0 ,

Fig. 4 Illustration of
Theorem 6.3

fc

y
p

~
f

_

fc

_ c

f(x)

y x

f

123

J Glob Optim (2009) 44:349–374 363

p2 :=
{

c − δ f c
2 δ2 f + √

Dp , if Dp ≥ 0 ,

y − 1 , if Dp < 0 ,

q1 :=
{

c − δ f c
2 δ2 f − √

Dq , if Dq ≥ 0 ,

y + 1 , if Dq < 0 ,

q2 :=
{

c − δ f c
2 δ2 f + √

Dq , if Dq ≥ 0 ,

y + 1 , if Dq < 0 ,

and

Ẑ :=
(

[p1, p2] ∩
[

y, c
])

∪ ([q1, q2] ∩ [c, y]) .

Then, we have

f (x) > f ∗, x ∈ [y] \ Ẑ.

Proof Let x ≤ c. Then, we have

f c + δ f c · (x − c) + δ2 f · (x − c)2 > f̃

⇔
(

x − c + δ f c/
(

2 δ2 f
))2

>

(
δ f c

2 δ2 f

)2

+
(

f̃ − f c
)

δ2 f
= Dp .

If Dp < 0, then by (20) we get

f (x) > f̃ for all x ∈
[

y, c
]

=
[

y, c
]

\ ∅ =
[

y, c
]

\
(

[p1, p2] ∩
[

y, c
])

.

If Dp ≥ 0, then we have

f c + δ f c · (x − c) + δ2 f · (x − c)2 > f̃ , x ∈
[

y, c
]

⇔ x /∈ [p1, p2] and x ∈
[

y, c
]

⇔ x ∈
[

y, c
]

\
(

[p1, p2] ∩
[

y, c
])

.

Therefore, we have

f (x) > f̃ for all x ∈
[

y, c
]

\
(

[p1, p2] ∩
[

y, c
])

(43)

both for Dp < 0 and Dp ≥ 0.
By considering x ∈ [c, y] we get

f (x) > f̃ for all x ∈ [c, y] \ ([q1, q2] ∩ [c, y]) (44)

analogously. Combining (43) and (44) we obtain

f (x) > f ∗, x ∈ [y] \ Ẑ,

with

Ẑ =
(

[p1, p2] ∩
[

y, c
])

∪ ([q1, q2] ∩ [c, y]) .

�

123

364 J Glob Optim (2009) 44:349–374

Corollary 6.6 If the assumptions of Theorem 6.5 hold, then each x∗ ∈ [y] that is a global
minimizer of f on [x] is contained in

(
[p1, p2] ∩

[
y, c

])
orin ([q1, q2] ∩ [c, y]) .

If
[

p1, p2
] ∩

[
y, c

]
= ∅ (45)

and

[q1, q2] ∩ [c, y] = ∅, (46)

then [y] cannot contain a global minimizer of f on [x]. (45) and (46) hold, if Dp < 0 and
Dq < 0.

Figure 5 illustrates Theorem 6.5 for

Dp ≥ 0 and Dq < 0.

In this case, the search for global minimizers x∗ ∈
[

y, y
]

of f on [x] can be restricted

to [p1, p2].
Figure 6 illustrates Theorem 6.5 for

Dp ≥ 0, Dq ≥ 0 and p2 > c, q1 < c.

In this case, the search for global minimizers x∗ ∈
[

y, y
]

of f on [x] can be restricted to

[p1, q2].
The other cases can be illustrated analogously.
Furthermore, by using (19) and the parabolas (20–23) we may update f̃ and compute a

lower bound f y for the range of f on [y]. This is done by the following two theorems.

Fig. 5 Illustration of
Theorem 6.5

2

~

1 cp

f

p

fc
fc

f(x)

f

y y_
_ x

123

J Glob Optim (2009) 44:349–374 365

Fig. 6 Illustration of
Theorem 6.5

2

~

1 c q

f

p

fc
fc

f(x)

f

y y_
_ x

Theorem 6.7 Suppose that Assumption A holds. Moreover, we define

al : = f c + δ f c ·
(

y − c
)

+ δ2 f ·
(

y − c
)2

,

ar : = f c + δ f c · (y − c) + δ2 f · (y − c)2 ,

pl : =
{

f c − 1
4

(
δ f c

)2
/ δ2 f , if δ2 f > 0 and c − 1

2 δ f c / δ2 f ∈
[

y, c
]
,

+∞, otherwise,

and

pr :=
{

f c − 1
4

(
δ f c

)2
/ δ2 f , if δ2 f > 0 and c − 1

2 δ f c / δ2 f ∈ [c, y] ,

+∞, otherwise.

If δ2 f ≤ 0, then we have

f ∗ ≤ min
{

al , ar , f c, f̃
}
.

If δ2 f > 0, then we have

f ∗ ≤

⎧
⎪⎨

⎪⎩

min
{

pl , al , f c, f̃
}
, if δ f c > 0,

min
{

pr , ar , f c, f̃
}
, if δ f c < 0,

min
{

f c, f̃
}
, if 0 ∈

[
δ f c, δ f c

]
.

Proof Because f ∗ ≤ f (x) holds for all x ∈ [y], the claim follows by minimizing the right
hand side of (21) and (23). �

Remark 6.8 Obviously, the upper bound of f ∗ in Theorem 6.7 is less than f̃ or equal to f̃ .
Therefore, in a global optimization algorithm we can update f̃ by using Theorem 6.7.

123

366 J Glob Optim (2009) 44:349–374

Theorem 6.9 Let f be continuous on [x] ⊆ D, c ∈ [y] =
[

y, y
]

⊆ [x] and f (c) ∈
[

f c, f c
]
. Furthermore, assume that

[
δ f c, δ f c

]
and

[
δ2 f , δ2 f

]
are intervals satisfying

(19).
Moreover, we define

bl := f c + δ f c ·
(

y − c
)

+ δ2 f ·
(

y − c
)2

,

br := f c + δ f c · (y − c) + δ2 f · (y − c)2 ,

ml :=
{

f c − 1
4

(
δ f c

)2
/ δ2 f , if δ2 f > 0 and c − 1

2 δ f c / δ2 f ∈
[

y, c
]
,

+∞, otherwise,

and

mr :=
{

f c − 1
4

(
δ f c

)2
/ δ2 f , if δ2 f > 0 and c − 1

2 δ f c / δ2 f ∈ [c, y] ,

+∞, otherwise.

Then, for all x ∈ [y] we have

f (x) ≥
{

min {bl , br } , if δ2 f ≤ 0,

min {ml , mr , bl , br } , if δ2 f > 0.

Proof The claim follows by minimizing the right hand side of (20) and (22). �

7 Algorithm

In this section, we state a branch-and-bound algorithm for global optimization of f : D ⊆
R

n → R on [x] ⊆ D. Let ε > 0 be the parameter used for the accuracy condition (17). We
initialize L, Q, and f̃ as described in Sect. 5.

The lists are ordered in the following way: A pair
(
[y], f y

)
is inserted into the list before

all pairs
(
[z], f z

)
with f y < f z and after all pairs

(
[z], f z

)
with f y ≥ f z. Therefore, if

f y > f̃ holds for one pair
(
[y], f y

)
of the list, then all subsequent pairs can be discarded.

While L is not empty, do the following steps:

1. Remove the first element
(
[y], f y

)
of L and set m := 1.

2. Compute t = (t1, . . . , tn) with ti ∈ {1, . . . , n} and ti
= t j for i
= j such that
diam [y]tk ≥ diam [y]tk+1 holds for k = 1, . . . , n − 1 (i.e. sorting by the diameter
of the components [y]i).

3. For k = 1 to n do steps 4 to 6.
4. Set c = mid [y]tk . Compute a second-order slope tuple

Fk =
(

f[y],
[

f c, f c
]
,
[
δ f c, δ f c

]
,
[
δ f , δ f

]
,
[
δ2 f , δ2 f

])

of f on [y] by componentwise computation with respect to component tk . Use (11–13)

to get an enclosure
[

f y, f y
]

of the range of f on [y] and use Theorem 6.9 for possibly

increasing f y. Update f̃ using Theorem 6.7. If f y ≥ f̃ , then go to step 8, because [y]
cannot contain a global minimizer.

123

J Glob Optim (2009) 44:349–374 367

5. Carry out a first-order pruning step for [y]tk (see [21,22]). This gives the (possibly empty)

intervals
[
u(1)

]
tk

⊆
[

y, c
]

and
[
u(2)

]
tk

⊆ [c, y] with x∗
tk ∈ [

u(1)
]

tk
∪ [

u(2)
]

tk
for all

global minimizers x∗ ∈ [y].
6. Use Theorems 6.1–6.5 for a second-order pruning step for [y]tk . Intersect the resulting

intervals with the intervals
[
u(1)

]
tk

and
[
u(2)

]
tk

from step 5:

(a) If all intersections are empty, then set m := m − 1 and go to step 8.
(b) If there is exactly one intersection interval

[
z(1)

]
, then set [y]tk := [

z(1)
]
.

(c) If there are two intersection intervals
[
z(1)

]
and

[
z(2)

]
, then set

[
y(m)

] := [y], set the
tk-th component

[
y(m)

]
tk

:= [
z(2)

]
and set m := m + 1. Finally, set [y]tk := [

z(1)
]
.

7. Set
[
y(m)

] := [y].
8. In Step 6 at most one new interval vector

[
y(i)

]
is generated. Thus, in step 3–7 a total of

m interval vectors
[
y(i)

]
is generated, where 0 ≤ m ≤ n + 1. By the properties of the

pruning steps of first and second order, each global minimizer x∗ ∈ [y] is contained in
a
[
y(i)

]
, i = 1, . . . , m. For all

[
y(i)

]
, i = 1, . . . , m, do steps 9–11.

9. Set c = mid
[
y(i)

]
and compute an enclosure

[
f y(i), f y(i)

]
of the range of f on

[
y(i)

]

by intersecting (14–16). Generate the pair
([

y(i)
]
, f y(i)

)
.

10. Use the enclosure
[

f c, f c
]

of f (c) obtained in step 9 for possibly updating f̃ .

11. If f̃ < f y(i), then discard the pair
([

y(i)
]
, f y(i)

)
. If

max
j=1,...,n

diamrel

[
y(i)

]

j
≤ ε

or if diamrel

[
f y(i), f y(i)

]
≤ ε, then insert

([
y(i)

]
, f y(i)

)
into Q, otherwise into L.

12. Delete all pairs
(
[y], f y

)
with f y > f̃ from L, because they do not contain a global

minimizer of f .

After the termination of the algorithm, we have f ∗ ∈
[

f y, f̃
]

for the first element
(
[y], f y

)
of Q. Furthermore, each global minimizer x∗ of f on [x] satisfies

x∗ ∈
⋃

(
[y], f y

)
∈Q

[y].

For each
(
[y], f y

)
∈ Q we have max j=1,...,n diamrel [y] j ≤ ε or diamrel

[
f y, f̃

]
≤ ε.

Note that the algorithm terminates on a floating-point computer, if the parameter ε > 0 is
greater than the machine accuracy.

8 Examples

We compare the algorithm from Sect. 7 with Ratz’ program [21,22]. For this purpose, we
consider 25 test functions. The test functions are listed in the appendix together with the
search interval [x] and the parameter ε. Most of them can be found in [3,18,21,31] and [35].

The following tables compare the algorithm of Ratz [21,22] with the new algorithm with
respect to the number of slope tuple computations of first (STC 1) and second order (STC 2),

123

368 J Glob Optim (2009) 44:349–374

the maximal length of the list L (max LL), and the computation time in seconds. In [21,22],
the algorithm of Ratz was implemented in Pascal-XSC [6,13], so we also implemented the
new algorithm in this programming language. The computations were carried out on a PC
with 2 Athlon MP 1800+ processors, 1 GB main memory and the operating system Suse
Linux 9.3. The source code is freely available [27]. A current Pascal-XSC compiler is pro-
vided by the working group “Scientific Computing/Software Engineering” of the University
of Wuppertal [38].

Table 1 shows that in most of the examples the new algorithm requires fewer slope tuple
computations, and the maximal length of the working list L is less than in the algorithm
of Ratz. Because the computation of a second-order slope tuple is more costly than the
computation of a first-order slope tuple, neither algorithm is generally better with respect to
computation time. In some of the examples the new algorithm is faster, whereas in some of
the examples it is slower than the algorithm of Ratz.

For some test functions, e.g. f 3, f 4, and f 10, the computation times differ substantially.
This can be explained as follows: Let f[y] be an enclosure of the range of f on some interval
[y] ∈ IR

n . If 0 ∈ f[y], then we have

diamrel f[y] = diam f[y],

i.e. the relative diameter of f[y] is equal to its absolute diameter. Hence, depending on the
current interval [y], many subdivisions of [y] may be needed until the accuracy condition
(17) is satisfied. In fact, for the test problems f 3, f 4, and f 10 the global minimum is f ∗ = 0,
so that this problem arises.

Table 1 Comparison of the new algorithm with the algorithm of Ratz

Ratz New algorithm (Sect. 7)

Ex. STC 1 Max LL Time [sec.] Ex. STC 2 Max LL Time [sec.]

f1 2108 27 0.18 f1 1000 18 0.15
f2 925 19 0.06 f2 876 28 0.11
f3 14057 177 2.33 f3 20870 350 6.04
f4 4990 156 0.96 f4 12615 160 4.12
f5 135851 1557 57.39 f5 84183 797 32.65
f6 1748 49 0.34 f6 1276 50 0.40
f7 12437 105 2.54 f7 7588 99 2.37
f8 830 9 0.18 f8 1044 16 0.36
f9 5985 56 2.31 f9 2342 29 1.07
f10 433181 1047 509.59 f10 19226 87 16.11
f11 314 10 0.03 f11 252 8 0.05
f12 5764 66 1.24 f12 5284 56 1.82
f13 367455 11437 525.93 f13 348989 11083 520.86
f14 11808 271 1.39 f14 1204 15 0.20
f15 4116 75 0.32 f15 1778 37 0.31
f16 88398 1072 27.10 f16 36081 556 11.45
f17 306 6 0.04 f17 202 4 0.05
f18 2948 81 0.29 f18 2304 58 0.43
f19 5935 20 0.35 f19 6610 21 0.70
f20 25337 137 8.35 f20 3997 134 1.57
f21 436 15 0.06 f21 348 12 0.08
f22 8761 240 1.69 f22 5450 212 1.57
f23 238268 6559 184.00 f23 115487 3766 72.37
f24 2524 71 0.29 f24 1894 60 0.45
f25 24595 537 3.65 f25 17481 445 4.67

123

J Glob Optim (2009) 44:349–374 369

The extent to which this effect results in higher computation times depends strongly on the
search interval [x]. Function f 3, i.e. the generalized function of Rosenbrock of dimension
5, illustrates this dependency. The results can be found in Table 2.

We observe that a slight variation of [x] significantly changes the number of slope tuples
that need to be computed and the computation time. In each case the unique global minimizer
is x∗ = (1, . . . , 1)T with f ∗ = 0.

Finally, we consider the examples f 1− f 25 once again. We reduce the effect described
above by increasing the function value by 1, i.e. we set f̃ (x) := f (x) + 1. The results are
listed in Table 3. We note that for some functions, e.g. f̃ 3, f̃ 4, f̃ 8− f̃ 10, and f̃ 14, having
f ∗ = 0 as the global minimum, the number of computed slope tuples and the computation
time decreased significantly. For other functions the results are almost unchanged compared
to f .

A similar effect can occur if x∗ = (0, . . . , 0) is the global minimizer: Suppose that during
the course of the algorithm we obtain an interval [y] with [y]i = [ai , bi], i = 1, . . . , n, for
some small ai ≤ 0, bi > 0. Suppose furthermore that in the next step of the algorithm we
obtain two subintervals

[
y(1)

]
and

[
y(2)

]
such that 0 ∈ [

y(1)
]

1 and 0 /∈ [
y(2)

]
1. Then,

[
y(2)

]

does not contain the global minimizer x∗ = (0, . . . , 0). However, it may not be possible to
discard

[
y(2)

]
because it is likely to be very close to x∗. Furthermore, the relative diameter

of
[
y(2)

]
1 may be very large so that the first relation in (17) can only be satisfied for very

small subintervals [z] ⊆ [
y(2)

]
. This effect can be observed for f̃ 19.

In summary, in most of the examples, the new algorithm requires fewer slope tuple com-
putations, and the maximal length of the working list L is less than in the algorithm of Ratz.
Neither algorithm is generally better with respect to computation time. Nevertheless, for
some of the examples the new algorithm is significantly faster than the algorithm of Ratz.

Table 2 The Rosenbrock function of dimension 5 for different search intervals [x] and ε = 10−10

1. [x] ∈ IR
5, [x]i = [−5.12, 5.12] , i = 1, . . . , 5,

2. [x] ∈ IR
5, [x]i = [−6, 6] , i = 1, . . . , 5,

3. [x] ∈ IR
5, [x]i = [−2, 5, 2, 5] , i = 1, . . . , 5,

4. [x] ∈ IR
5, [x]i = [−3, 4] , i = 1, . . . , 5,

5. [x] ∈ IR
5, [x]i = [−1, 2] , i = 1, . . . , 5,

6. [x] = ([−2, 2] , [−1.5, 2.5] , [−3, 3] , [0, 3] , [−1, 1.5])T ,
7. [x] = ([−3, 6] , [−6, 2] , [−4, 3] , [−5, 3] , [−2, 6])T ,
8. [x] = ([−3, 6] , [−6, 2] , [−4, 3] , [−5, 1] , [−2, 6])T ,
9. [x] = ([−1.5, 3.2] , [0.12, 1.5] , [−2.1, 2.7] , [−2, 2] , [−1, 5.12])T ,

10. [x] = ([−1.5, 3.2] , [0.12, 1.5] , [−2.1, 2.7] , [−2, 2] , [−1.5, 5.12])T .

Ratz New algorithm (Sect. 7)

No. STC 1 Max LL Time [sec.] No. STC 2 Max LL Time [sec.]

1 14057 177 2.33 1 20870 350 6.05
2 15045 144 2.48 2 12110 160 3.09
3 20603 258 3.70 3 16420 206 4.47
4 24459 290 4.36 4 35879 576 11.52
5 21376 412 3.90 5 17889 250 4.80
6 23761 285 3.99 6 24244 196 6.40
7 13116 152 1.86 7 11025 177 2.58
8 22974 351 4.10 8 7296 128 1.74
9 31433 509 5.89 9 74315 1561 29.75

10 253419 6869 183.80 10 21954 247 5.89

123

370 J Glob Optim (2009) 44:349–374

Table 3 Comparison of the two algorithms for f̃ (x) := f (x) + 1

Ratz New algorithm (Sect. 7)

No. STC 1 Max LL Time [sec.] No. STC 2 Max LL Time [sec.]

f̃ 1 2004 27 0.17 f̃ 1 938 18 0.15
f̃ 2 642 19 0.04 f̃ 2 668 28 0.08
f̃ 3 11190 107 1.74 f̃ 3 11296 137 2.77
f̃ 4 6549 156 1.26 f̃ 4 4047 160 1.20
f̃ 5 135905 1557 59.27 f̃ 5 84199 797 32.97
f̃ 6 1748 49 0.34 f̃ 6 1276 50 0.41
f̃ 7 12437 105 2.54 f̃ 7 7588 99 2.39
f̃ 8 429 9 0.08 f̃ 8 381 8 0.11
f̃ 9 1480 21 0.43 f̃ 9 1087 21 0.42
f̃ 10 16932 89 9.67 f̃ 10 11060 87 8.15
f̃ 11 224 10 0.02 f̃ 11 166 8 0.03
f̃ 12 4030 66 0.80 f̃ 12 5192 56 1.73
f̃ 13 367447 11437 534.96 f̃ 13 348967 11083 514.43
f̃ 14 1256 19 0.10 f̃ 14 838 15 0.13
f̃ 15 3890 75 0.31 f̃ 15 1670 37 0.29
f̃ 16 88598 1072 28.14 f̃ 16 36309 560 11.67
f̃ 17 306 6 0.04 f̃ 17 202 4 0.05
f̃ 18 2948 81 0.30 f̃ 18 2304 58 0.44
f̃ 19 5930 20 0.37 f̃ 19 55379 2060 28.12
f̃ 20 25337 137 8.33 f̃ 20 3997 134 1.59
f̃ 21 436 15 0.06 f̃ 21 348 12 0.08
f̃ 22 8781 240 1.72 f̃ 22 5450 212 1.59
f̃ 23 238616 6559 188.290 f̃ 23 115592 3766 72.45
f̃ 24 2548 71 0.30 f̃ 24 1906 60 0.46
f̃ 25 24733 537 3.76 f̃ 25 17535 445 4.76

9 Conclusion

In this paper, we have introduced a second-order pruning step for verified global optimization
on a floating-point computer. Using automatic computation of a second-order slope tuple, we
added this second-order pruning step to an algorithm by Ratz. Furthermore, we compared
our new algorithm with the algorithm of Ratz by considering some test problems. In most
of the test problems, the new algorithm requires fewer slope tuple computations than the
algorithm of Ratz. Neither algorithm is generally better with respect to computation time,
because the computation of a second-order slope tuple is more costly than the computation
of a first-order slope tuple. The source code of the programs is freely available [27].

Acknowledgements The author gratefully acknowledges the supervision of his dissertation by Prof.
Dr. G. Alefeld. Furthermore, the author would like to thank Dr. J. Mayer for reading the paper and polishing
the English.

Appendix

We consider the following 25 test problems:

1. Function of Branin : f : R
2 → R, [x] = ([−5, 10] , [0, 15])T , ε = 10−12,

f (x) =
(

5

π
x1 − 5.1

4π2 x2
1 + x2 − 6

)2

+ 10

(
1 − 1

8π

)
cos x1 + 10.

123

J Glob Optim (2009) 44:349–374 371

2. Function of Rosenbrock: f : R
2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) = 100
(
x2 − x2

1

)2 + (x1 − 1)2 .

3. Generalized function of Rosenbrock of dimension 5: f : R
5 → R, [x] = [−5.12, 5.12]5,

ε = 10−10,

f (x) =
4∑

i=1

(
100

(
xi+1 − x2

i

)2 + (xi − 1)2
)

.

4. Function G7 of Griewank: f : R
7 → R, [x] = [−50, 60]7, ε = 10−3,

f (x) =
7∑

i=1

x2
i

4000
−

7∏

i=1

cos

(
xi√

i

)
+ 1.

5. Function L3 of Levy: f : R
2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
5∑

i=1

i cos ((i − 1) x1 + i) ·
5∑

j=1

j cos ((j + 1) x2 + j) .

6. Function L5 of Levy: f : R
2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
5∑

i=1

i cos ((i − 1) x1 + i) ·
5∑

j=1

j cos ((j + 1) x2 + j)

+ (x1 + 1.42513)2 + (x2 + 0.80032)2 .

7. A variant of function L5 of Levy: f : R
3 → R, [x] = [−10, 50]3, ε = 10−12,

f (x) =
5∑

i=1

i cos ((i − 1) x1 + i) ·
5∑

j=1

j cos ((j + 1) x2 + j)

+ (x1 + 1.42513)2 + (x2 + 0.80032)2 + (x3 − 1)2 .

8. Function L8 of Levy: f : R
3 → R, [x] = [−10, 50]3, ε = 10−12,

f (x) =
n−1∑

i=1
(yi − 1)2 (1 + 10 sin2 (πyi+1)

) + sin2 (πy1) + (yn − 1)2

with n = 3 and yi = 1 + (xi − 1) /4, i = 1, . . . , n.

⎫
⎬

⎭
(47)

9. Function L10 of Levy: f : R
5 → R, [x] = [−10, 50]5, ε = 10−12 and (47) with n = 5.

10. Function L12 of Levy: f : R
10 → R, [x] = [−10, 50]10, ε = 10−8 and (47) with

n = 10.
11. Function L13 of Levy: f : R

2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) =
n−1∑

i=1
(xi − 1)2 (1 + sin2 (3πxi+1)

)

+ (xn − 1)2 (1 + sin2 (2πxn)
) + sin2 (3πx1)

⎫
⎬

⎭
(48)

with n = 2.
12. Function L18 of Levy: f : R

7 → R, [x] = [−10, 50]7, ε = 10−8 and (48) with n = 7.

123

372 J Glob Optim (2009) 44:349–374

13. Function of Goldstein and Price: f : R
2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) = (
1 + (x1 + x2 + 1)2 (19 − 14x1 + 3x2

1 − 14x2 + 6x1x2 + 3x2
2

))

· (30 + (2x1 − 3x2)
2 (18 − 32x1 + 12x2

1 + 48x2 − 36x1x2 + 27x2
2

))
.

14. Function SC32 of Schwefel: f : R
3 → R, [x] = [−1.89, 1.89]3, ε = 10−12,

f (x) =
3∑

i=2

((
x1 − x2

i

)2 + (xi − 1)2
)

.

15. Function R4 of Ratz: f : R
2 → R, [x] = [−3, 3]2, ε = 10−12,

f (x) = sin
(
x2

1 + 2x2
2

) · exp
(−x2

1 − x2
2

)
.

16. A variant of Shubert’s test function from [21,Sect. 5.7.1]: f : R
2 → R, [x] = [−10, 50]2,

ε = 10−12,

f (x) =
5∑

i=1

i sin ((i + 1) x1 + i) cos x2.

17. Example 6.18 from [21]: f : R
2 → R, [x] = [−10, 50]2, ε = 10−12,

f (x) = |y1 − 1| (1 + 10 |sin (πy2)|) + |sin (πy1)| + |y2 − 1|
with yi = 1 + (xi − 1) /4, i = 1, 2.

18. Example 6.19 from [21]: f : R
2 → R, [x] = ([−100, 100] , [0.02, 100])T , ε = 10−12,

f (x) = 10 |x1 − 1|
∣∣∣∣sin

(
1

x2

)∣∣∣∣ + (x2 + 2) · |x1 − 1 + 2x2| .

19. Example 6.20 from [21]: f : R
4 → R, [x] = [−4, 4]4, ε = 10−12,

f (x) = |x1 + 10x2| + 5 |x3 − x4| + |x2 − 2x3| + 10 |x1 − x4| .
20. Example 6.22 from [21]: f : R

9 → R, [x] = [−10, 50]9, ε = 10−12,

f (x) =
8∑

i=1

|xi − 1| (1 + |sin (3πxi+1)|)

+ |x9 − 1| (1 + |sin (2πx9)|) + |sin (3πx1)| + 1.

21. Example 6.26 from [21]: f : R
2 → R, [x] = [0, 10]2, ε = 10−12,

f (x) = min
{

|cos (2x1)| + |cos (2x2)| − 3 sin
(πx1

10

)
− 2 sin

(πx2

10

)
,

50 |x1 − 1| + 50 |x2 − 1| − 5} .

22. Function of Henriksen, Madsen, Dim2: f : R
2 → R, [x] = [−10, 10]2, ε = 10−6,

f (x) = −
2∑

i=1

5∑

j=1

j sin ((j + 1) xi + j) .

123

J Glob Optim (2009) 44:349–374 373

23. Function of Henriksen, Madsen, Dim3: f : R
3 → R, [x] = [−10, 10]3, ε = 10−6,

f (x) = −
3∑

i=1

5∑

j=1

j sin ((j + 1) xi + j) .

24. Function from the SIAM 10x10-Digit-Challenge (see [3,p. 77]): f : R
2 → R, [x] =

[−1, 1]2, ε = 10−12,

f (x) = exp (sin (50x1)) + sin (60 exp x2) + sin (70 sin x1)

+ sin (sin (80x2)) − sin (10 (x1 + x2)) + (
x2

1 + x2
2

)
/4.

25. A variant of example 24 (see [3,p. 99]): f : R
3 → R, [x] = [−1, 1]3, ε = 10−12,

f (x) = exp (sin (50x1)) + sin (60 exp x2) sin (60x3) + sin (70 sin x1) cos (10x3)

+ sin (sin (80x2)) − sin (10 (x1 + x3)) + (
x2

1 + x2
2 + x2

3

)
/4.

References

1. Alefeld, G., Herzberger, J.: Introduction to Interval Computations. Academic Press, New York (1983)
2. Baumann, E.: Optimal centered forms. BIT 28, 80–87 (1988)
3. Bornemann, F., Laurie, D., Wagon, S., Waldvogel, J.: The SIAM 100-digit challenge: a study in

high-accuracy numerical computing. society of industrial and applied mathematics (SIAM). Philadelphia
(2004)

4. Clarke, F.H.: Optimization and Nonsmooth Analysis. John Wiley & Sons, New York (1983)
5. Frommer, A., Lang, B., Schnurr, M.: A comparison of the Moore and Miranda existence tests. Comput-

ing 72, 349–354 (2004)
6. Hammer, R., Hocks, M., Kulisch, U., Ratz, D.: Numerical Toolbox for Verified Computing I. Springer-

Verlag, Berlin (1993)
7. Hansen, E.R.: Interval forms of Newton’s method. Computing 20, 153–163 (1978)
8. Hansen, E.R.: Global optimization using interval analysis—the one-dimensional case. J. Optim. Theory

Appl. 29, 331–344 (1979)
9. Hansen, E.R.: Global optimization using interval analysis—the multi-dimensional case. Numer.

Math. 34, 247–270 (1980)
10. Hansen, E.R., Walster, G.W.: Global optimization using interval analysis: second edition, revised and

expanded. Marcel Dekker, New York (2004)
11. Ichida, K., Fujii, Y.: An interval arithmetic method for global optimization. Computing 23, 85–97 (1979)
12. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers,

Dordrecht (1996)
13. Klatte, R., Kulisch, U., Neaga, M., Ratz, D., Ullrich, Ch.: Pascal-XSC—Language Reference with

Examples. Springer, Berlin (1992)
14. Kolev, L.: Use of interval slopes for the irrational part of factorable functions. Reliab. Comput. 3,

83–93 (1997)
15. Krawczyk, R., Neumaier, A.: Interval slopes for rational functions and associated centered forms. SIAM

J. Numer. Anal. 22, 604–616 (1985)
16. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs, NJ (1966)
17. Moore, R.E.: A test for existence of solutions to nonlinear systems. SIAM J. Numer. Anal. 14(4),

611–615 (1977)
18. Moré, J.J., Garbow, B.S., Hilstrom, K.E.: Testing unconstrained optimization software. ACM Trans.

Math. Software 7, 17–41 (1981)
19. Muñoz, H., Kearfott, R.B.: Slope intervals, generalized gradients, semigradients, slant derivatives, and

csets. Reliab. Comput. 10(3), 163–193 (2004)
20. Rall, L.B.: Automatic Differentiation: Techniques and Applications, Lecture Notes in Computer Science,

vol. 120. Springer, Berlin (1981)
21. Ratz, D.: Automatic Slope Computation and its Application in Nonsmooth Global Optimization. Shaker

Verlag, Aachen (1998)

123

374 J Glob Optim (2009) 44:349–374

22. Ratz, D.: A nonsmooth global optimization technique using slopes—the one-dimensional case. J. Global
Optim. 14, 365–393 (1999)

23. Rump, S.M.: Expansion and estimation of the range of nonlinear functions. Math. Comp. 65(216),
1503–1512 (1996)

24. Schäfer, U., Schnurr, M.: A comparison of simple tests for accuracy of approximate solutions to nonlinear
systems with uncertain data. J. Ind. Manage. Optim. 2(4), 425–434 (2006)

25. Schnurr, M.: The automatic computation of second-order slope tuples for some nonsmooth functions.
ETNA Electron. Trans. Numer. Anal. (to appear)

26. Schnurr, M.: Computing slope enclosures by exploiting a unique point of inflection. Appl. Math. Comput.
(to appear)

27. Schnurr, M.: Webpage for software download. http://iamlasun8.mathematik.uni-karlsruhe.de/~ae26/
software/

28. Schnurr, M.: Some supplements concerning automatic slope enclosures. PAMM 6(1), 691–692 (2006)
29. Schnurr, M.: Steigungen höherer Ordnung zur verifizierten globalen Optimierung. PhD Thesis, Univer-

sität Karlsruhe (2007). http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007229
30. Schnurr, M., Ratz, D.: Slope enclosures for functions given by two or more branches (submitted for

publication)
31. Schwefel, H.: Numerical Optimization of Computer Models. Wiley, New York (1981)
32. Shen, Z., Wolfe, M.A.: On interval enclosures using slope arithmetic. Appl. Math. Comput. 39,

89–105 (1990)
33. Skelboe, S.: Computation of rational interval functions. BIT 4, 87–95 (1974)
34. Sotiropoulos, D.G., Grapsa, T.N.: A branch-and-prune method for global optimization: the univari-

ate case. In: Krämer, W., Gudenberg, J.W.v. (eds.) Scientific Computing, Validated Numerics, Interval
Methods, pp. 215–226. Kluwer, Boston (2001)

35. Törn, A., Žilinskas, A.: Global Optimization, Lecture Notes in Computer Science, vol. 50. Springer,
Berlin (1989)

36. Vinko, T., Lagouanelle, J.-L., Csendes, T.: A new inclusion function for global optimization: kite—the
one dimensional case. J. Global Optim. 30, 435–456 (2004)

37. Vinko, T., Ratz, D.: A multidimensional branch-and-prune method for interval global optimization.
Numer. Algorithms 37, 391–399 (2004)

38. XSC Website.: Website on programming languages for scientific computing with validation. http://www.
xsc.de (December 2007)

123

http://iamlasun8.mathematik.uni-karlsruhe.de/~ae26/software/
http://iamlasun8.mathematik.uni-karlsruhe.de/~ae26/software/
http://digbib.ubka.uni-karlsruhe.de/volltexte/1000007229
http://www.xsc.de
http://www.xsc.de

	A second-order pruning step for verified global optimization
	Abstract
	1 Introduction
	2 Slope functions and slope enclosures
	3 Automatic computation of slope tuples
	4 The componentwise computation of slope tuples
	5 Global optimization using interval analysis
	6 A second-order pruning step
	7 Algorithm
	8 Examples
	9 Conclusion
	Acknowledgements

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [5952.756 8418.897]
>> setpagedevice

